Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(10): e0187068, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073286

RESUMO

BACKGROUND: Childhood obesity prevalence has increased worldwide and is an important risk factor for type 2 diabetes (T2D) and cardiovascular disease (CVD). The production of inflammatory adipokines by obese adipose tissue contributes to the development of T2D and CVD. While levels of circulating adipokines such as adiponectin and leptin have been established in obese children and adults, the expression of adiponectin and leptin receptors on circulating immune cells can modulate adipokine signalling, but has not been studied so far. Here, we aim to establish the expression of adiponectin and leptin receptors on circulating immune cells in obese children pre and post-lifestyle intervention compared to normal weight control children. METHODS: 13 obese children before and after a 1-year lifestyle intervention were compared with an age and sex-matched normal weight control group of 15 children. Next to routine clinical and biochemical parameters, circulating adipokines were measured, and flow cytometric analysis of adiponectin receptor 1 and 2 (AdipoR1, AdipoR2) and leptin receptor expression on peripheral blood mononuclear cell subsets was performed. RESULTS: Obese children exhibited typical clinical and biochemical characteristics compared to controls, including a higher BMI-SD, blood pressure and circulating leptin levels, combined with a lower insulin sensitivity index (QUICKI). The 1-year lifestyle intervention resulted in stabilization of their BMI-SD. Overall, circulating leukocyte subsets showed distinct adipokine receptor expression profiles. While monocytes expressed high levels of all adipokine receptors, NK and iNKT cells predominantly expressed AdipoR2, and B-lymphocytes and CD4+ and CD8+ T-lymphocyte subsets expressed AdipoR2 as well as leptin receptor. Strikingly though, leukocyte subset numbers and adipokine receptor expression profiles were largely similar in obese children and controls. Obese children showed higher naïve B-cell numbers, and pre-intervention also higher numbers of immature transition B-cells and intermediate CD14++CD16+ monocytes combined with lower total monocyte numbers, compared to controls. Furthermore, adiponectin receptor 1 expression on nonclassical CD14+CD16++ monocytes was consistently upregulated in obese children pre-intervention, compared to controls. However, none of the differences in leukocyte subset numbers and adipokine receptor expression profiles between obese children and controls remained significant after multiple testing correction. CONCLUSIONS: First, the distinct adipokine receptor profiles of circulating leukocyte subsets may partly explain the differential impact of adipokines on leukocyte subsets. Second, the similarities in adipokine receptor expression profiles between obese children and normal weight controls suggest that adipokine signaling in childhood obesity is primarily modulated by circulating adipokine levels, instead of adipokine receptor expression.


Assuntos
Leucócitos/citologia , Obesidade/metabolismo , Receptores de Adipocina/metabolismo , Adipocinas/sangue , Adolescente , Índice de Massa Corporal , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Citometria de Fluxo , Humanos , Masculino , Obesidade/sangue
2.
Methods ; 61(1): 10-7, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23603216

RESUMO

Cytokines are key components of the innate and adaptive immune system. As pivotal players in the progression or regression of a pathological process, these molecules provide a window through which diseases can be monitored and can thus act as biomarkers. In order to measure cytokine levels, a plethora of protocols can be applied. These methods include bioassays, protein microarrays, high-performance liquid chromatography (HPLC), sandwich enzyme-linked immunosorbent assay (ELISA), Meso Scale Discovery (MSD) electrochemiluminescence and bead based multiplex immunoassays (MIA). Due to the interaction and activity of cytokines, multiplex immunoassays are at the forefront of cytokine analysis by allowing multiple cytokines to be measured in parallel. However, even with optimized protocols, sample standardization needs to occur before these proteins can optimally act as biomarkers. This review describes various factors influencing the levels of cytokines measured in plasma, serum, dried blood spots and tissue biopsies, focusing on sample collection and handling, long term storage and the repetitive use of samples. By analyzing how each of these factors influences protein levels, it is concluded that samples should be stored at low temperatures in order to maintain cytokine stability. In addition, within a study, sample manipulations should be kept the same, with measurement protocols being chosen for their compatibility with the research in question. By having a clear understanding of what factors influence cytokine levels and how to overcome these technical issues, minimally confounded data can be obtained and cytokines can achieve optimal biomarker activity.


Assuntos
Citocinas/sangue , Imunoensaio/normas , Manejo de Espécimes/normas , Biomarcadores/sangue , Teste em Amostras de Sangue Seco , Humanos , Análise Serial de Proteínas , Padrões de Referência , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...